

Statistics

Lecture 9

Feb 19 8:47 AM

Counting:

There are 5 people

Adam, Bill, Carol, David, Eddie

I need to select 2 people

AB	AC	AD	AE
BA	BC	BD	BE
CA	CB	CD	CE
DA	DB	DC	DE
EA	EB	EC	ED

If order
does not
matter,

10 ways

Use Combination formula

$$nC_x = \frac{n!}{x!(n-x)!}$$

$$5C_2 = \frac{5!}{2!(5-2)!}$$

How to use TI:

5 [Math] \rightarrow PRB \downarrow

nCr 2 [Enter]

$$= \frac{5 \cdot 2}{1} = [10]$$

Jan 22 4:34 PM

How many ways can we select 3 items from 8 different items when order does not matter and no replacement?

$$8C_3 = \frac{8!}{3! \cdot (8-3)!}$$

$$= \frac{8!}{3! \cdot 5!} = \frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2 \cdot 1 \cdot 5!}$$

8 [Math] \rightarrow PRB ↓

$$= \frac{56}{1} = 56$$

[nCr] 3 [Enter]

Jan 22 4:42 PM

CA Lotto

Choose 5 numbers in any order from 1 to 50.

How many combinations?

$$50C_5 = 2,118,760$$

Jan 22 4:46 PM

You are taking a quiz. There are 10 True/ false questions. You are making random guesses.

How many ways can you have 7 correct guesses?

CCCCCCCCC̄C̄

$$10C_7 = 120$$

!

How about 5 correct answers?

$$10C_5 = 252$$

Jan 22-4:48 PM

(SG 16)

Binomial Prob. Dist.

1) n independent events.

2) Each event has only two outcomes.

$$P(\text{Success}) = p \quad P(\text{Failure}) = q$$

$$p + q = 1$$

$$q = 1 - p$$

p & q do not change for all events.

3) x is # of successes,
 $n-x$ is # of failures.

$$P(x) = \binom{n}{x} \cdot p^x \cdot q^{n-x}$$

of ways
 to have x successes.

Jan 22-4:52 PM

You flip a fair coin 10 times. $n=10$
 Success is to land tails. $P=.5$
 $q=.5$

$P(\text{lands exactly 7 tails})$

$$P(x=7) = 10C_7 \cdot (.5)^7 \cdot (.5)^3 = \boxed{.117}$$

Jan 22-4:57 PM

You are taking a multiple-choice quiz.

You are making random guesses. $q=\frac{3}{4}=.75$

There are 12 questions. $n=12$
 $P=\frac{1}{4}=.25$

Each question has 4 choices but only
one correct choice.

$P(\text{guess exactly 5 correct answers})$

$$P(x=5) = 12C_5 \cdot (.25)^5 \cdot (.75)^7 = \boxed{.103}$$

Using TI Command

2nd VARS f,f... binompdf()

Trials: 12 $12, .25, 5$

P: .25

x value: 5

Paste Enter

Your Work

$$\boxed{P(x=5) = \text{binompdf}(12, .25, 5) = .103}$$

Jan 22-5:02 PM

A loaded coin is tossed 20 times.
 Success is to land tails. $n=20$
 $P=.6$
 Prob. of landing tail on any toss is .6.
P(lands tails exactly 15 times).

$$P(x=15) = \text{binompdf}(20, .6, 15) = .075$$

P(lands tails at most 15 times)

$$P(x \leq 15) = \text{binomcdf}(20, .6, 15) = .949$$

Jan 22-5:10 PM

I randomly selected 25 students.
 Prob. that each student pass the math
 class is .8. $n=25$
 $P=.8$

1) P(exactly 10 pass the class)

$$P(x=10) = \text{binompdf}(25, .8, 10) = 1.15 \times 10^{-5}$$

2) P(at most 20 pass the class)

$$P(x \leq 20) = \text{binomcdf}(25, .8, 20) = .579$$

Jan 22-5:17 PM

Consider a True/False exam with 100 questions.
You are making random guesses.

1) $n = 100$

2) $p = .5$

3) $q = .5$

4) $np = 100(.5)$
 $= 50$

5) $npq = 100(.5)(.5)$
 $= 25$

6) \sqrt{npq}
 $= \sqrt{25}$
 $= 5$

7) $P(\text{guess correctly exactly 60 times})$

$$P(x=60) = \text{binompdf}(100, .5, 60) = \boxed{.011}$$

8) $P(\text{guess correctly fewer than 60 times})$

$$P(x < 60) = P(x \leq 59)$$

$$= \text{binomcdf}(100, .5, 59) = \boxed{.972}$$

Jan 22-5:23 PM

9) $P(\text{guess correctly at least 45 times})$

$$P(x \geq 45) = 1 - P(x \leq 44)$$

We don't want 44 45 We want Total Prob.

$$= 1 - \text{binomcdf}(100, .5, 44)$$

$$= \boxed{.864}$$

Jan 22-5:31 PM

400 voters were randomly selected.

Prob. that any voter voted Yes on tougher gun control is .8.

1) $n = 400$

2) $P = .8$

3) $q = .2$

4) $np = 400(.8)$

= $\boxed{320}$

5) $npq = 400(.8)(.2)$

= $\boxed{64}$

6) \sqrt{npq}

= $\sqrt{64} = \boxed{8}$

7) $P(\text{exactly 325 voted Yes})$

$$P(X = 325) = \text{binompdf}(400, .8, 325) = \boxed{.042}$$

Jan 22-5:35 PM

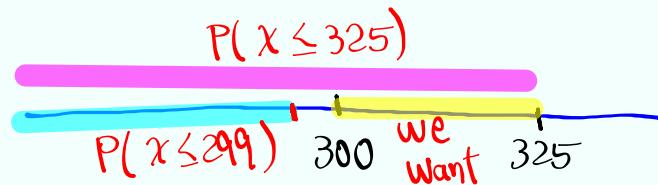
8) $P(\text{at most 330 voted Yes})$

$$P(X \leq 330) = \text{binomcdf}(400, .8, 330) = \boxed{.907}$$

9) $P(\text{more than 300 voted Yes})$

$$P(X > 300) = P(X \geq 301)$$

we don't want 300 *we want* 301


$$= 1 - P(X \leq 300)$$

$$\text{Total Prob.} = 1 - \text{binomcdf}(400, .8, 300)$$

$$= \boxed{.991}$$

Jan 22-5:42 PM

10) $P(\text{between 300 and 325, inclusive voted Yes})$

$$\begin{aligned}
 P(300 \leq X \leq 325) &= P(X \leq 325) - P(X \leq 299) \\
 &= \text{binomcdf}(400, .8, 325) - \\
 &\quad \text{binomcdf}(400, .8, 299) \\
 &= \boxed{.746}
 \end{aligned}$$

Jan 22-5:48 PM

Binomial Prob. Dist.

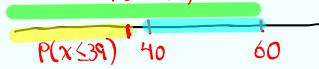
Mean $\mu = np$

Variance $\sigma^2 = npq$

Standard deviation $\sigma = \sqrt{\sigma^2}$

Jan 22-6:05 PM

Consider a binomial Prob. dist with
 $n=100$ & $P=.5$


$$1) q=1-P=\boxed{.5} \quad 2) \mu=np=100(.5)=\boxed{50}$$

$$3) \sigma^2=npq=100(.5)(.5)=\boxed{25} \quad 4) \sigma=\sqrt{\sigma^2}=\sqrt{25}=\boxed{5}$$

$$68\% \text{ Range} \quad \mu \pm \sigma = 50 \pm 5 \rightarrow \boxed{45 \text{ to } 55}$$

$$95\% \text{ Range} \quad \mu \pm 2\sigma = 50 \pm 2(5)=50 \pm 10 \rightarrow \boxed{40 \text{ to } 60}$$

$$P(40 \leq x \leq 60) = P(x \leq 60) - P(x \leq 39)$$

$$= \text{binomcdf}(100, .5, 60) - \text{binomcdf}(100, .5, 39)$$

$$= \boxed{.965}$$

Jan 22-6:07 PM

Suppose prob. that a newborn baby is a boy is .6.

If we randomly select 250 newborn babies,

$$1) n=250 \quad 2) P=.6 \quad 3) q=.4$$

$$4) \mu=np=250(.6) \quad 5) \sigma^2=npq=250(.6)(.4)=\boxed{150} \quad \sigma=\boxed{12.25}$$

$$6) \sigma=\sqrt{\sigma^2}=\sqrt{150} \approx \boxed{12}$$

$$7) \text{Usual Range} \quad \mu \pm 2\sigma = 150 \pm 2(12) = 150 \pm 24 \rightarrow \boxed{126 \text{ to } 174}$$

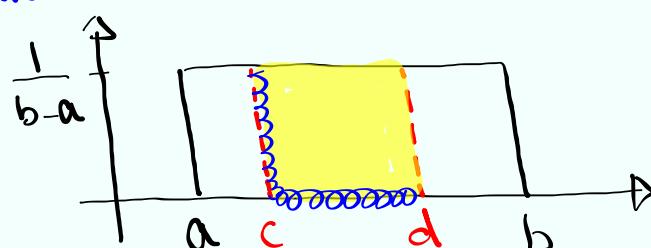
$$8) P(\text{we have between 134 and 166 boys, inclusive})$$

$$P(134 \leq x \leq 166) = \text{binomcdf}(250, .6, 166) - \text{binomcdf}(250, .6, 133)$$

$$= \boxed{.967}$$

Jan 22-6:15 PM

Continuous Random Variable with Prob. dist.

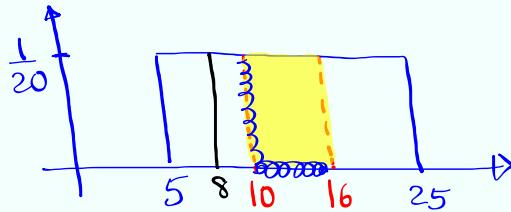

(SG 17-20)

- 1) Uniform Prob. dist.
- 2) Standard Normal Prob. dist.
- 3) Normal Prob. dist.
- 4) Central limit theorem
- 5) Applications.

Jan 22-6:44 PM

Uniform Prob. dist.

Let x be a continuous random variable
for all values from a to b with
uniform Prob. dist.



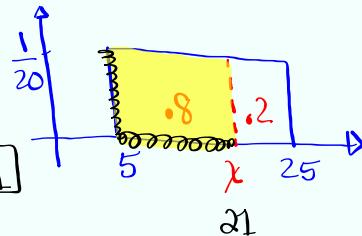
$$P(x=c) = 0$$

$$P(c < x < d) = (d-c) \cdot \frac{1}{b-a}$$

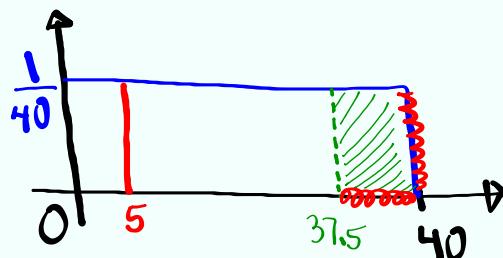
Jan 22-6:48 PM

Consider a Uniform Prob. dist. For all values from 5 to 25.

$$P(x=8) = 0$$


↑
Line

$$P(10 < x < 16) = (16 - 10) \cdot \frac{1}{20} = \frac{6}{20} = \boxed{.3}$$

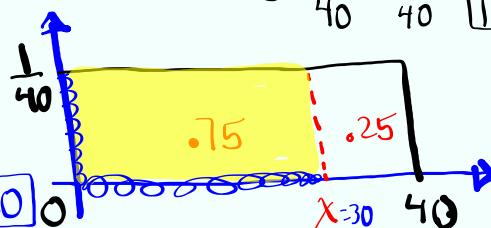

Find $x = P_{80}$

$$(x-5) \cdot \frac{1}{20} = .8$$

$$x-5 = 20 \cdot .8 \quad |x=21$$

Consider a Uniform Prob. dist. For all values from 0 to 40.

$$P(x=5) = 0$$


$$P(x > 37.5) = (40 - 37.5) \cdot \frac{1}{40}$$

$$= 2.5 \cdot \frac{1}{40} = \frac{2.5}{40} = \boxed{\frac{1}{16}}$$

Find $x = Q_3$

$$(x-0) \cdot \frac{1}{40} = .75$$

$$x = 40 \cdot .75 = \boxed{30}$$

